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Linear programming is a widely used tool for timber harvest scheduling in North America. However, some potential
problems related to infeasible harvest schedules, overly optimistic objective function values, and the need to strictly satisfy
all constraints included in deterministic model formulations have been raised. This paper describes a fuzzy approach for
explicitly recognizing the imprecise nature of the harvest flow constraints usually included in harvest scheduling models.
The objective function and selected constraints are viewed as soft, and satisfactory solutions are derived and discussed for
several scenarios. An illustrative sample problem is presented to demonstrate the methodology, and a comparison with
solutions derived from a traditional linear programming model is presented.

BARE, B.B., et MENDOZA, G.A. 1992. Timber harvest scheduling in a fuzzy decision environment. Can. J. For. Res. 22 :
423-428.

La programmation linéaire est un outil largement utilisé pour la planification des programmes de coupe dans les foréts
d’Amérique du Nord. Cependant, les problémes potentiels reliés a des programmes de coupe non réalisables et a des fonctions
objectives ayant des valeurs trop optimistes ainsi que la nécessité de satisfaire sans exception toutes les contraintes inhérentes
a la formulation d’un modele déterministe ont été€ soulevés. Cette publication décrit une approche nébuleuse pour tenir compte
de facon explicite de la nature imprécise des contraintes de flux de coupe normalement incluses dans les modeles de
programme de coupe forestiere. La fonction objective et les contraintes choisies sont considérées comme étant flexibles et
les solutions satisfaisantes sont ‘dérivées et analysées pour plusieurs scénarios de coupe. Un cas-type est présenté i titre
d’exemple pour démontrer la méthodologie et une comparaison est faite avec les solutions obtenues en utilisant un modele

de programmation linéaire traditionnel.

Introduction

The use of optimization models, particularly linear pro-
gramming (LP), in timber harvest scheduling has become
commonplace in North America. This acceptance is primarily
because of the capability of LP to optimize any linear objec-
tive and at the same time meet any set of linear constraints
that may restrict the attainment of the objective. This flexi-
bility, coupled with ease of both computation and model inter-
pretation, has stimulated usage of this modeling tool.

While LP is a suitable planning tool for timber harvest
scheduling, some criticisms have been raised concerning its
use. One of the most frequent criticisms is that LP treats
all model parameters as nonstochastic measurements that are
known with certainty (Bare and Field 1987). Many attempts
have been made to incorporate uncertainty into LP models.
Past studies include stochastic LP using chance constraints
(Thompson and Haynes 1971), LP with penalty cost minimi-
zation (Marshall 1988), and LP with a multistage recourse
formulation (Hoganson and Rose 1987). These approaches
generally follow classical concepts of stochastic programming
and probability theory. Most, however, have been used spar-
ingly in actual practice.

More recently, Gassmann (1989) applied stochastic pro-
gramming using the Dantzig—Wolfe decomposition principle
to determine an optimal harvest schedule in the presence
of risk of forest fires. It was found that stochastic models
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produced more conservative results than deterministic coun-
terparts. Reed and Errico (1986) applied LP to a similar
problem and reported optimum harvest volumes to decrease
as the per-annum fire probabilities increased.

Hof et al. (1988) were among the first to examine the prob-
lem of using LP in timber harvest scheduling models when
timber yield coefficients in the constraint set were treated as
random variables. They concluded that a solution generated
without recognizing the randomness of the timber yield coef-
ficients nearly always is infeasible. Pickens and Dress (1988)
also examined this phenomenon and arrived at similar con-
clusions. Further, they found that the objective function value
obtained when the constraint set contained random timber
yield coefficients was an optimistically biased estimate of the
true expected value. Hobbs and Hepenstal (1989) reached
similar conclusions for the case where random estimation
errors in objective function coefficients resulted in an upward
bias in the optimal objective function value, assuming that
errors in the constraint set were relatively unimportant.

This paper describes how fuzzy mathematical programming
can be used to cope with uncertainty in timber harvest sched-
uling models. Unlike the papers cited above, it is assumed
throughout that uncertainties can be adequately modeled as
fuzzy sets. Thus, timber yield coefficients are treated as deter-
ministic, but (i) strict satisfaction of constraint limits is
relaxed and (ii) attainment of goal aspiration levels is sought,
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but not required. Solutions derived using a fuzzy formulation
are contrasted with results obtained from a traditional LP-
based approach.

Fuzzy approach to model uncertainty

As an alternative to probability-based models, a fuzzy
approach has been proposed for modeling uncertainty. This
approach was developed by Zadeh (1965) primarily in response
to the need to solve problems with fuzzy data (e.g., measure-
ment inaccuracies or vagueness of available information).
Although the literature does not endorse a single unique def-
inition of fuzziness, there are some qualitative differences in
the kind of imprecision and uncertainty for which the fuzzy
approach was developed, and for which probabilistic or stochas-
tic approaches may not be appropriate. As stated by Mendoza
and Sprouse (1989), “the concept has generally been associ-
ated with complexity, vagueness, ambiguity, and impreci-
sion.” This further implies that model coefficients, parameters,
or functional relationships may be fuzzy and, hence, not known
with complete certainty.

Besides probabilistic methods, sensitivity analysis has also
been proposed to handle imprecision and uncertainty. This
type of analysis examines the best and worst cases based on
ranges of values for the parameters. Parametric analysis is
another possible approach for investigating the impacts of uncer-
tainty on model behavior. However, this method also becomes
unwieldy when many parameters are examined simultaneously.

Fuzzy optimization offers an alternative framework for
modeling uncertainty and imprecision. Since the seminal
work of Zadeh (1965), the literature has expanded rapidly.
Readers are referred to the following references for details:
Zimmermann (1985, 1987), Dubois and Prade (1980), and
Negoita (1979). For forestry applications, Hof er al. (1986),
Mendoza and Sprouse (1989), and Pickens and Hof (1991)
are among the first published works dealing with fuzzy opti-
mization in forest management.

Fuzzy linear programming

Fuzziness can be modeled in several ways depending upon
the nature of imprecision, the context in which uncertainty
occurs, and how it is accommodated in the problem. For
instance, in a mathematical programming setting, fuzziness
can be restricted to the constraints, the objective function, or
both; and fuzziness may be manifested as fuzzy numbers (i.e.,
coefficients in the objective function or constraints) or as
fuzzy sets (i.e., the objective function or constraints). In this
paper, fuzziness is assumed to appear only in the objective
function and the timber harvest flow constraints. Other con-
straints of the LP model are treated as crisp constraints.

The problem addressed represents a situation where the
decision maker (DM) tolerates some degree of violation in
the accomplishment of the timber harvest flow constraints. In
USDA Forest Service national forest planning, this represents
the case where departures from strict nondeclining flow over
time are tolerated. In other applications this might represent
violation of area regulation constraints, even-flow timber
harvest flow constraints, or any form of harvest flow con-
straint wherein a periodic harvest flow must be within a given
percentage of a previous period’s harvest level. In these sit-
uations, the fuzzy constraints are to be satisfied as well as
possible, but they do not have to be satisfied in a strict sense.
Thus, these fuzzy constraints also can be referred to as soft

or flexible. If the membership function (see discussion below)
invoked in the fuzzy formulation is linear, then we speak of
a fuzzy LP (FLP) model.

Before formally defining the FLP model, we first restate
the classical LP problem as follows:

[1] max. c'x
subject to
[2] Ax < b

where [1] is the objective function and [2] is the set of linear
constraints. Another constraint set, x = 0, is also understood.

In timber harvest scheduling models, [1] corresponds to a
forest management objective (often maximization of net
present value (NPV) or timber harvest volume) and [2] cor-
responds to management constraints such as acreage, budget,
and harvest volume flow. For example, ¢ could represent a
NPV per acre and x the number of acres assigned to a specific
management prescription. Under traditional LP formulations,
the right-hand sides (), representing resource limitations, are
assumed to be fixed, and any solution (x) must strictly satisfy
this absolute bound. Obviously, this assumption is very rigid,
especially for complex problems such as those encountered
in timber harvest scheduling. If the decision environment is
completely known, the technical input-output coefficients i
matrix A can be accurately determined and & also can be
precisely specified. Under these assumptions, the formulation
in [1] and [2] is a valid model of the decision problem.
However, this is usually not the case in timber harvest sched-
uling because timber yield coefficients may be imprecisely
estimated and strict adherence to constraint limitations may
not be required. Given this situation, it is impractical to
impose strict satisfaction of [2].

Most timber harvest schedules are revised after one or two
planning periods have elapsed. Thus, in actuality, an iterative
process is used to set timber harvest levels over time. If not
linked to the harvest level immediately prior to recalculation,
the new harvest schedule often results in a harvest volume
that is inconsistent with the previous schedule. That is, harvest
volumes may decline in actuality when (in theory) they were
previously constrained to be nondeclining. This effect is dis-
cussed by McQuillan (1986) and Pickens et al. (1990) and is
partial justification for treating the timber harvest flow con-
straints as soft and not as fixed requirements.

It is also possible to model the decision environment by
treating the coefficients of A as random variables. This is not
done in this paper because the added model complexity is not
justified by the decision environment. Further, it is more
appropriate to treat this type of problem using probability-
based methods because timber yield coefficients are better
viewed as a stochastic, and not a fuzzy, process. Following
Negoita (1979), the decision environment is changed such that
b; is no longer a point estimate but instead becomes an
interval. That is, constraint set [2] is changed to

[3] Zaijxj <~ b

where <~ implies a fuzzified version of constraint [2]. Note
that the a; and the objective function are treated as crisp.
Operationally, b; in [3] is represented as an interval (e.g.,
(b, (b; + t)]), where #; is the maximum amount of constraint
tolerance permitted.

for all fuzzy i
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Intuitively, [3] implies that the DM tolerates a certain
amount of violation in [2], but the constraints should be sat-
isfied to the extent possible. This desire to jointly satisfy all
flexible constraints may be characterized by the membership
function, my(x), as follows:

[4] mi(x) = [(b, + t,‘) - a,-x]/tl- if b,' < ax < bi + ¢

0 ifal-x>b,~+t,~

An intuitive explanation of the membership function,
my(x), is as follows: the DM is very satisfied (i.e., the degree
of satisfaction is equal to 1) if a solution x satisfies the con-
straint fully; the DM is less satisfied with a solution that meets
the constraint only partially (i.e., within the tolerable amount
of violation); and the DM is completely unsatisfied (i.e., the
degree of satisfaction is equal to 0) if a solution x violates the
constraint plus the maximum tolerable amount. Zimmermann
(1978) proposed a linear membership function as in [4] for
the situation where the degree of satisfaction decreases in
a linear fashion (i.e., 0 < my(x) < 1) for any solution with
increasing constraint violation. The formal FLP model with
flexible constraints can be described as

[Sa] max. cTx
subject to
Ax <~ b

Note that [5a] implies that all constraints are fuzzy. This
is unnecessary and can be relaxed by adding an additional set
of crisp linear constraints as shown below:

[5b] max. ¢"x

subject to
Ax <~ b
Dx <d

The objective function (¢'x) is assumed to be a strict maxi-
mization, and a; and dy; are crisp coefficients. Negoita (1979)
refers to [Sa] and [5b] as a flexible mathematical program-
ming problem.

Problem [5] was originally presented by H.-J. Zimmer-
mann' and Tanaka et al. (1974), and a number of procedures
have been proposed to solve this formulation. For instance,
given a linear membership function, Chanas (1983) has shown
" that [5a] and [55] reduce to a parametric LP problem that can
be solved to determine the entire fuzzy decision set.? How-
ever, instead of determining the entire fuzzy decision set,
it may be more desirable to generate a single crisp solution
to the fuzzy decision problem. Werners (1984, as cited by
Zimmermann 1987) demonstrated that the following formu-
lation generates one crisp solution to the fuzzy model shown
in [5a] and [5b]:

'H.-J. Zimmermann. 1974. Optimization in fuzzy environments.
Paper presented at the Operations Research Society of America — The
Institute of Management Sciences Meeting, San Juan, Puerto Rico.

2A fuzzy decision set consists of a number of solutions representing
combinations of maximum ¢"x and satisfaction levels for the fuzzy
constraints in eq. 5b.

[6] max. k
subject to
k(Zy - 7)) — ¢™x < -2,
kt + Ax <b +t
Dx <d
0<k<1

where Z; and Z; are the objective function values calculated
by specifying the right-hand sides as & and b + ¢, respec-
tively; £ is the allowable relaxation (or tolerance limit) from
each constraint, and k is an indicator of membership to the
fuzzy set (representing constraints or objectives) that we wish
to maximize (Zimmermann 1987). This formulation leads to
one crisp solution, but it is not necessarily the best solution.
Other solutions may be superior if nonlinear membership
functions are used or if different values for ¢ are selected.

If the objective function, as well as some constraints, is
treated as fuzzy, an alternate formulation is required. For this
situation we assume that we wish to find x such that

cx >~ z
Ax <~ b
Dx <d

Assuming linear membership functions as shown in [4] and
now treating z as an aspiration level for the objective function,
Zimmermann (1987) shows that an equivalent crisp formula-
tion is

[7] max. k
subject to
kt + Bx < g + ¢
Dx <d
0<k<1

In [7], B contains both ¢ and A, and g contains both z and
b. Thus, [7] is fully symmetric with respect to the objective
function and constraints. If present, multiple goals are
assumed to be of equal importance in this formulation and are
represented in B and g.

Ensuing sections of the paper utilize the model described
by [6] to devise a harvest schedule that jointly seeks to max-
imize NPV while simultaneously achieving a nondeclining
harvest flow to the extent possible. This model utilizes the
MAXMIN operator to maximize k, the degree of satisfaction.
In the first constraint of [6], Z, is the value of the objective
function when ¢ is set at its maximum tolerable limit, and
Z, is the value of the objective when ¢ is set equal to 0. The
second constraint embodies the maximum tolerance in non-
declining yield acceptable to the DM. That is, while the DM
prefers to have strict nondeclining harvest flow, a decline of
¢ Mbf (1 Mbf = 1000 board ft; 1 board ft = 2.360 dm®) from
one decade to the next is acceptable.

An examination of [6] reveals that the fuzzy nondeclining
yield constraints are treated symmetrically with the objective
of maximizing NPV. This approach (confluence of goals and
constraints; Bellman and Zadeh 1970) generates one deter-
ministic, or crisp, solution instead of the entire fuzzy decision
set. Further, k jointly represents the degree of satisfaction in
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terms of both the level of achievement for the objective and
the satisfaction of the fuzzy constraints. Intuitively, maxi-
mizing the degree of satisfaction, k, implies that the DM is
most satisfied when k approaches 1 and least satisfied when
k approaches 0. Yet, it is highly unlikely for k to equal 1,
since this occurs when yields decline at their maximum tol-
erated level. This is unlikely to occur since the second con-
straint in [6] seeks nondeclining yields.

Taking a different viewpoint, one also can interpret the
maximum allowable violation of the nondeclining flow con-
straint to represent the expected uncertainty of the unknown
parameter b. That is, b can be expected to have values within
the interval (b, b + £). In the context of the timber harvest
scheduling sample problem, this interval is (0, ) and may be
interpreted as follows: while nondeclining flow is desirable,
it is recognized that due to projection uncertainty, harvest
volume for the next decade cannot be completely or accu-
rately known. The degree of uncertainty is represented by the
width of the interval.

Sample problem

To illustrate the potential usefulness and limitations of the
fuzzy decision models described in the previous section, a
timber harvest scheduling problem is presented and analyzed.
Results derived from this model are contrasted with those
derived using a traditional LP formulation. The sample prob-
lem is adapted from McQuillan (1986) and Pickens et al.
(1990) and was selected because (i) it allows us to build on
the work of Hof et al. (1986), (ii) it emulates the decision
environment that occurs on many forest areas throughout the
western United States, and (iii) it addresses a problem that
timber managers face as they attempl Lo convert unmanaged
forests into a more managed state.

The problem involves the maximization of NPV associated
with timber harvesting over twelve 10-year planning periods
subject to land area, nondeclining timber harvest flow, and
long-run sustained yield capacity constraints. The last restric-
tion limits periodic timber harvest volume to be less than or
equal to an exogenously determined long-run harvest volume
(17 857 Mbf/decade).

Using a model I formulation (Johnson and Scheurman 1977),
all possible harvesting schemes are defined for the five analy-
sis areas. Each area is 1000 acres (1 acre = 0.40 ha) in size
and possesses identical site productivity, stocking, and tim-
ber quality characteristics. Existing stands yield 15 Mbf/acre
when harvested, and regenerated stands yield 25 Mbf/acre
when harvested at age 70 years (or later). The interest rate is
4%, the current product price is $300/Mbf, the expected rise
in prices is 1.5% per year for the first 50 years and constant
thereafter, and harvesting costs for each analysis area are a
constant $170, $290, $410, $530, and $650/Mbf. All revenues
and costs occur at the midpoint of each decade.

At the outset, 12 harvesting alternatives are defined for
each analysis area. Each decision variable represents the num-
ber of acres assigned to an alternative within a particular
area. Management alternatives allow for the harvest of exist-
ing stands with provision for a subsequent harvest in a later
decade (if possible) in the planning horizon. In the initial
formulation, there are 60 decision variables, 12 accounting
variables representing the total harvest volume in each
decade, 5 land area constraints, 11 nondeclining periodic

timber harvest flow constraints, 12 sustained yield capacity
constraints, and 12 transfer rows that define total timber
harvest volume.

Both McQuillan (1986) and Pickens ef al. (1990) solve
this problem using standard LP procedures. As they reported,
the resultant timber harvest schedule for the initial plan-
ning iteration produces a nondeclining harvest flow of
10 000 Mbf/decade for the first 7 decades, followed by a har-
vest of 16 667 Mbf/decade for the remaining 5 decades in the
planning horizon. Further, they demonstrate that if the opti-
mal first period harvest schedule is adopted as shown, and a
second iteration of planning is performed using the updated
inventory that results if the first period solution is imple-
mented, the resulting harvest volume in decade 2 drops to
9522 Mbf (a reduction of about 5%). And, successive plan-
ning iterations reveal a similar reduction in harvest volume
over the first 4 decades. This phenomenon has been labeled
“the declining even flow effect” (McQuillan 1986), and
occurs in spite of the nondeclining timber harvest flow con-
straints that are mandated within a given planning iteration.

Two problems invite investigation: (/) How does a fuzzy
approach to timber harvest scheduling compare with a LP
approach within a given planning iteration? (it) What role, if
any, can fuzzy programming play in resolving the declining
flow between planning iterations?

Comparison of FLP with LP

To demonstrate the potential usefulness of a fuzzy approach
to help resolve the first of these questions, the sample problem
described above is reexamined. As previously stated, the
uncertainty or imprecision occurs in the constraint set involving
the nondeclining flow requirements. All remaining constraints
are treated as being crisp. Likewise, the objective function is
assumed to be crisp and involves the maximization of NPV.

The FLP model described by [6] is used to generate a timber
harvest schedule that maximizes the degree of satisfaction, k.
For purposes of illustration, ¢ is set equal to 500 Mbf for all
11 of the nondeclining flow constraints. In the context of the
harvest scheduling problem, this results in the following con-
straints:

H; - Hy,, + 500k <500, j=1,2 .. 11

where H; represents the total harvest volume in decade j.
To complete the definition of the FLP model shown in [6],
values for Z; and Z; must be calculated. The latter value is
that associated with the traditional nondeclining LP model,
wherein ¢ is set to 0. For the sample problem this produces a
NPV of $4 024 400. To obtain a value for Z,;, a modified
LP model must be solved. In the modified model, the non-
declining flow constraints are altered to read H; — H;; < 500.
This means that strict nondeclining flow can be violated so
long as the reduction in total harvest volume from decade to
decade does not exceed 500 Mbf. The results of this LP run
produce a NPV of $4 040 336.25, an increase of $15 936.25
over the traditional nondeclining formulation.

The volume of timber scheduled for harvest under the two
LP models just described is shown in Table 1. The larger NPV,
associated with the Z; run, results in a larger 1st decade
harvest, with a steady drop of 500 Mbf/decade until a low
harvest volume of 9000 Mbf is reached in decade 4. The total
timber harvest over the 12-decade planning horizon for the
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TABLE 1. Comparison of harvest schedules using LP and FLP formulations (harvest
volumes in Mbf)

FLP using

LP with LP with
Decade Hy - Hj1 £0 H; — H;4+1 < 500 eq. 6
1 10 000 10 500 10 250
2 10 000 10 000 10 000
3 10 000 9 500 91750
4 10 000 9 000 9 500
5 10 000 10 714 10 375
6 10 000 10 286 10 125
7 10 000 9 786 9 875
8 16 667 17 500 17 083
9 16 667 17 000 16 833
10 16 667 16 500 16 583
11 16 667 16 000 16 333
12 16 667 17 857 17 291
NPV ($) 4 024 400* 4 040 336.257 4 032 378.75%
(k = 0.50)
*Z,.
1Z,

TABLE 2. FLP solutions obtained using eq. 7 for differing NPV targets and tolerable deviations

Tolerable deviation from NPV target ($)

Target — — =
NPV (%) 5000 10 000 15 000 20 000 40 000

4 024 400

k 0.76 0.62 0.52 0.44 0.29

NPV ($) 4028 208 4 030 551 4032 137 4 033 282 4 035 818
4032 379

k 0.38 0.31 0.26 0.22 0.14

NPV ($) 4 034 286 4 035 458 4036 253 4 036 826 4 038 095

traditional nondeclining flow model is 153 335 Mbf, while
the modified model results in a comparable volume of
154 643 Mbf. Both of these solutions are presented only for
the first iteration of planning.

Given the values for Z, and Z,, the first constraint of [6]
can be written as

~15936.25k + ¢™x > 4024 400

The results obtained using the FLP formulation shown in
[6] are displayed in Table 1. The maximum value for k is
found to be 0.50, indicating an equal trade-off between non-
declining harvest flow and NPV maximization. Consequently,
the FLP formulation results in a maximum decline of only
250 Mbf between decades (one-half the tolerated amount)
and results in achieving only one-half of the $15 936.25 of
NPV that is available to gain. These results are predictable,
but the value of the minimum harvest volume over the 12-
decade planning horizon is not. The minimum harvest volume
(occurring in decade 4) has been increased to 9500 Mbf (up
500 Mbf from the traditional LP run).

Next, [7] is used with both the objective function as well
as the nondeclining flow constraints treated as being fuzzy.
Again, linear membership functions are assumed. Equation 7
represents a clear confluence of goals and constraints and
illustrates how fuzzy goals and constraints can be combined.
To complete the formulation of [7], an aspiration level for the
NPV goal and a tolerable deviation from this target are

required. For purposes of comparison and illustration, a range
of values is used to demonstrate the sensitivity of the resulting
solution. The results of these calculations are shown in
Table 2.

The two aspiration levels for NPV were selected to repre-
sent the minimum NPV associated with the strict nondeclining
flow run and the value from the FLP using [6]. Tolerable
deviations from these aspiration levels were picked to bracket
the maximum $15 936 difference between the two traditional
LP runs shown in Table 1. Thus, with a $4 024 400 NPV
aspiration level and a tolerable deviation of $15 000, the
solution shown in Table 2 is comparable to the FLP solution
of Table 1. The advantage of using [7] is that additional goal
levels and tolerable levels of deviation can be examined and
displayed. As expected, for a fixed NPV target, the results
show a decreasing level of satisfaction over increasing levels
of goal deviation. This is a consequence of increasing devia-
tions from nondeclining flow being balanced against an
increasing NPV. Also, as the NPV aspiration level increases,
the overall measure of satisfaction decreases. All results
shown in Table 2 continue to assume a maximum decline of
500 Mbf in the harvest flow constraints.

With regard to the second question (i.e., What role, if any,
can fuzzy programming play in resolving the declining flow
between planning iterations?), the results obtained above indi-
cate that the usefulness of FLP appears quite limited. The
principal problem here is one of inventory imbalance and
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harvest yield as the forest structure is altered over time. This
is further exacerbated by the sequential nature of the planning
environment and the lack of linkages between successive
planning iterations. The presence of declining flows under
such circumstances indicates that adherence to strict non-
declining flow within a planning iteration should be ques-
tioned, and perhaps abandoned. If so, FLP offers potential as
a tool to allow the systematic exploration of satisfactory alter-
native solutions.

Conclusions

Two versions of a FLP timber harvest scheduling model
are presented. The first assumes a crisp objective function
combined with fuzzy nondeclining flow constraints, and the
second assumes that the objective function is also fuzzy.
Numerical results for both problems are shown and compared
with previously published traditional LP formulations of the
same problem. A brief discussion of the resulting solutions is
presented.

Fuzzy methods, specifically FLP, appear to offer hope as
viable planning tools for incorporating uncertainty into timber
harvest scheduling problems. However, these methods are not
substitutes for the more developed statistical or probabilistic
methods, nor will they completely solve or shed additional
light on all fuzzy problems. For example, the declining even
flow effect cannot be eliminated or resolved simply by using
FLP. But, FLP solutions provide additional insights not
readily available from traditional LP solutions. Since FLP
approaches are relatively easy to formulate and solve, they
provide a useful tool for forest management analysts.

A critical component that requires additional study is the
definition of the membership function (i.e., [4]). Perhaps a
nonlinear function would better characterize harvest sched-
uling problems that involve nondeclining flow constraints.
Such a formulation would enable a DM to gencrate a timber
harvest schedule such that the degree of satisfaction would
decrease dramatically as small violations from nondeclining
yield arose, but then not decrease in proportion to larger
violations. In light of the difficulty to fully characterize the
uncertainty in timber harvest scheduling using other available
techniques, FLP appears to be a good alternative planning tool
that merits consideration.

Bare, B.B., and Field, R.C. 1987. An evaluation of FORPLAN from
an operations research perspective. In FORPLAN: An evaluation of
a forest planning tool. Symposium Proceedings. U.S. For. Serv.
Rocky Mt. For. Range Exp. Stn. Gen. Tech. Rep. RM-140.
pp. 133-144.

Bellman, R., and Zadeh, L. 1970. Decision making in a fuzzy envi-
ronment. Manage. Sci. 17: 141-164.

Chanas, S. 1983. Parametric programming in fuzzy linear program-
ming. Fuzzy Sets Syst. 11: 243-251.

Dubois, D., and Prade, H. 1980. Fuzzy sets and systems: theory and
applications. Academic Press, New York.

Gassmann, H.I. 1989. Optimal harvest of a forest in the presence of
uncertainty. Can. J. For. Res. 19: 1267-1274.

Hobbs, B.F., and Hepenstal, A. 1989. Is optimization optimistically
biased? Water Resour. Res. 25(2): 152-160.

Hof, J.G., Pickens, J.B., and Bartlett, E.T. 1986. A MAXMIN approach
to nondeclining yield timber harvest scheduling problems. For. Sci.
32: 653-666.

Hof, J.G., Robinson, K.S., and Betters, D.R. 1988. Optimization with
expected values of random yield coefficients in renewable resource
linear programs. For. Sci. 34: 634-646.

Hoganson, HM., and Rose, D.W. 1987. A model for recognizing
forest-wide risk in timber management scheduling. For. Sci. 33:
268-282.

Johnson, K.N., and Scheurman, H.L. 1977. Techniques for pre-
scribing optimal timber harvest and investment under different
objectives—discussion and synthesis. For. Sci. Monogr. 18.

Marshall, P.L.. 1988. A procedure for constructing timber manage-
ment strategies under uncertainty. Can. J. For. Res. 18: 398-405.

McQuillan, A.G. 1986. The declining even flow effect—nonsequitur
of national forest planning. For. Sci. 32: 960-972.

Mendoza, G.A., and Sprouse, W.L. 1989. Forest planning and deci-
sion making under fuzzy environments: an overview and illustra-
tion. For. Sci. 35: 481-502.

Negoita, C.V. 1979. Management applications of system theory.
Birkhiduser, Basel, Switzerland, and Boston.

Pickens, J.B., and Dress, P.E. 1988. Use of stochastic production
coefficients in linear programming models: objective function dis-
tribution, feasibility and dual activities. For. Sci. 34: 574-591.

Pickens, J.B., and Hof, J.G. 1991. Fuzzy goal programming in for-
estry: an application with special solution problems. Fuzzy Sets
Syst. 39: 239-246.

Pickens, J.B., Kent, B.M., and Ashton, P.G. 1990. The declining even
flow effect and the process of national forest planning. For. Sci.
36: 665-679.

Reed, W.J., and Eirico, D. 1986. Optimal harvest scheduling at the
forest level in the presence of the risk of fire. Can. J. For. Res. 16:
266-278.

Tanaka, H., Okuda, T., and Asai, K. 1974. On fuzzy mathematical
programming. J. Cybern. 3: 37-46.

Thompson, E.F., and Haynes, R.-W. 1971. A linear programming —
probabilistic approach to decision making under uncertainty. For.
Sci. 17: 224-229.

Werners, B. 1984. Interaktive Entscheidungsunterstiitzung durch ein
flexibles mathematisches Programmierungssystem. Miinchen.

Zadeh, L. 1965. Fuzzy sets. Inf. Control. 8: 338-353.

Zimmermann, H.-J. 1978. Fuzzy programming and linear program-
ming with several objective functions. Fuzzy Sets Syst. 1: 45-55.

Zimmermann, H.-J. 1985. Fuzzy set theory and applications. Nijhoff
Publishing, Boston.

Zimmermann, H.-J. 1987. Fuzzy sets, decision making, and expert
systems. Kluwer Academic Publishers, Boston.



